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Boundary element solution of unsteady magnetohydrodynamic
duct �ow with di�erential quadrature time integration scheme
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SUMMARY

A numerical scheme which is a combination of the dual reciprocity boundary element method (DRBEM)
and the di�erential quadrature method (DQM), is proposed for the solution of unsteady magnetohydro-
dynamic (MHD) �ow problem in a rectangular duct with insulating walls. The coupled MHD equa-
tions in velocity and induced magnetic �eld are transformed �rst into the decoupled time-dependent
convection–di�usion-type equations. These equations are solved by using DRBEM which treats the time
and the space derivatives as nonhomogeneity and then by using DQM for the resulting system of initial
value problems. The resulting linear system of equations is overdetermined due to the imposition of
both boundary and initial conditions. Employing the least square method to this system the solution is
obtained directly at any time level without the need of step-by-step computation with respect to time.
Computations have been carried out for moderate values of Hartmann number (M6 50) at transient
and the steady-state levels. As M increases boundary layers are formed for both the velocity and the
induced magnetic �eld and the velocity becomes uniform at the centre of the duct. Also, the higher the
value of M is the smaller the value of time for reaching steady-state solution. Copyright ? 2005 John
Wiley & Sons, Ltd.
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1. INTRODUCTION

The study of the �ow of conducting �uids in the presence of transverse magnetic �eld has
attracted attention owing to its applications in geology, power generation, �owmetry, ther-
monuclear reactor technology, etc. In general, the problems of magnetohydrodynamic (MHD)
�ow are extremely complex since they involve both the hydrodynamic �ow equations and
Maxwell equations of electrodynamics. The conducting �uid �ow can induce electric current
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and interact with the magnetic �eld. This interaction in turn produces Lorentz force on the
�uid and can greatly change the �ow behaviour resulting in sharply varying induced mag-
netic �eld. Due to the coupling of hydrodynamic and magnetic �elds, exact solutions have
been found only for simple cases and geometry. Therefore, it is important to devise e�ective
numerical methods for the approximate solution of MHD duct �ow problems.
Many researchers investigated the MHD problem in 2-dimensional case using several

numerical methods. Singh and Lal [1, 2] have obtained numerical solution of the MHD
�ows through pipes of triangular cross-section using a �nite di�erence method (FDM). Then
they presented the �nite element method (FEM) solution of MHD �ow in channels of arbi-
trary wall conductivity [3–5]. Singh and Lal’s MHD duct problem solutions were only for
Hartmann numbers less than 10. Tezer-Sezgin and K�oksal [6] extended these studies to mod-
erate Hartmann numbers by using FEM with linear and quadratic elements. Scandiuzzi and
Schre�er [7] presented a FEM for solving 2-dimensional MHD �ows and developed an
equation relating magnetic �eld boundary conditions to the conductivity of the walls. Later,
Demendy and Nagy [8] have used the analytical FEM to obtain their numerical solution of
MHD �ow in the range of Hartmann number ¡1000. The boundary element method applica-
tion of the steady MHD �ow in channels was considered by Singh and Agarwal [9] in terms
of a singular integral equation. Carabineanu et al. [10], Tezer-Sezgin [11] and Liu and Zhu
[12] have solved steady MHD duct �ow problem for small and moderate values of Hartmann
number.
Although steady �ows have been studied extensively, a few papers have appeared on tran-

sient 2-dimensional MHD �ows in channels. Among the papers mentioned above, Singh and
Lal’s [5] and Tezer-Sezgin and K�oksal’s [6] studies were on the FEM solution of time-
dependent MHD �ow equations. Seungsoo and Dulikravich [13] proposed a FDM scheme for
3-dimensional unsteady MHD �ow together with temperature �eld. They have used explicit
Runge–Kutta method for step-by-step computations in time. Sheu and Lin [14] presented a
convection–di�usion–reaction model for solving unsteady MHD �ow applying a FDM on non-
staggered grids with a transport scheme in each ADI (predictor–corrector) spatial sweep. The
stabilized FEM for the solution of 3-dimensional time-dependent MHD equations was given
by Salah et al. [15]. The time derivative vectors were evaluated by a �nite-di�erence-like
expression involving two previous time steps. The solution algorithm in each of these un-
steady MHD �ow studies is based on explicit time-stepping schemes starting with the given
initial conditions. It is known that for explicit schemes, the time increment must be taken very
small to deal with the stability problems, and therefore they are computationally expensive.
Implicit time-stepping schemes are usually unconditionally stable and do not need small time
increments but the overall discretization with respect to spatial and time variables makes the
numerical scheme very complicated. The aim of this paper is to use di�erential quadrature
method (DQM) in time discretization and obtain the solution directly at the required time
level. The combined application of DRBEM for the spatial partial derivatives and DQM for
the time derivative in solving di�usion problems was presented by Tanaka and Chen [16].
The resulting Lyapunov matrix equation was solved by Bartels–Stewart algorithm to reduce
the computing e�ort of solving such matrix equations.
In this paper, the coupled velocity and magnetic �eld equations are �rstly transformed

into decoupled time-dependent convection–di�usion-type equations with non-conducting walls.
Then dual reciprocity boundary element method (DRBEM) is applied treating the time deriva-
tive and the convection terms as the nonhomogeneity in the equations which is approximated
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by using linear and quadratic radial basis functions. DRBEM application to time-dependent
convection–di�usion equation results in a system of �rst-order initial value problems. This
initial value problem is discretized by Bozkaya [17] using DQM which results in an overde-
termined linear system of equations due to the insertion of both initial and boundary condi-
tions. Then the least square method is made use of to obtain the �nal square linear system
of equations containing unknown nodal values at both discretized space and time points. The
ordering of the solution vector is such that, it contains all the nodal values in the spatial
domain from initial to required time level. This way, the resulting linear system of equa-
tions can be solved by any direct or iterative solver without any special treatment like in
Lyapunov matrix equations. Thus, the solution procedure can be used with large time incre-
ments to obtain the solution directly at the required time level without the need of step-by-step
computations in time.

2. BASIC EQUATIONS

The governing equations of MHD �ow are obtained from Maxwell equations of electromag-
netism and the basic equations of �uid mechanics. The unsteady, laminar, fully developed �ow
of viscous, incompressible and electrically conducting �uid in a rectangular duct, subjected to
a constant and uniform applied magnetic �eld B0 can be put in the following non-dimensional
form [18]:

∇2V +M
@B
@x
=−1 + @V

@t

∇2B+M
@V
@x
=
@B
@t

(1)

in �× [0;∞) with the boundary conditions and the initial condition
V (x; y; t) = 0 B(x; y; t) = 0 (x; y)∈ @�
V (x; y; 0) = 0 B(x; y; 0) = 0 (x; y)∈�

(2)

The boundaries of the duct are assumed to be insulating. V (x; y; t), B(x; y; t) are the velocity
and the induced magnetic �eld, respectively, M is the Hartmann number. The applied magnetic
�eld B0 is parallel to x-axis. V (x; y; t), B(x; y; t) are in the z-direction which is the axis of
the duct. The �uid is initially at rest and then starts to move down the duct by applying a
constant pressure gradient. As t→ ∞ we get the steady-state solution. Due to the physical and
geometrical conditions in which the motion takes place, most of the studies are concentrated
not on the original unsteady but on the steady MHD equations which have exact solutions
for simple geometry and wall conductivity. However, it is important to see the behaviour of
the solution at transient levels as approaching to the steady state. Thus, the original unsteady
MHD equations are solved for a rectangular duct with insulating walls in this paper.
Equations (1) may be decoupled by the change of variables

U1 =V + B; U2 =V − B (3)
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as

∇2U1 +M
@U1
@x

=−1 + @U1
@t

(x; y; t)∈�× [0;∞)
∇2U2 −M @U2

@x
=−1 + @U2

@t

(4)

U1(x; y; t) = 0 U2(x; y; t)=0 (x; y)∈ @�

U1(x; y; 0) = 0 U2(x; y; 0)=0 (x; y)∈�
(5)

It is possible to go back to the original unknowns V and B through Equation (3).
Now, both equations of (4) are time-dependent convection–di�usion-type equations with

the only di�erence being +M replaced by −M in the second equation. Thus, the equation to
be considered

∇2u= b(x; y; ux; ut) (6)

where

b(x; y; ux; ut)=− 1 + @u
@t

−M @u
@x

(7)

in the �rst equation of (4) and

b(x; y; ux; ut) = −1 + @u
@t
+M

@u
@x

(8)

in the second equation of (4) with zero boundary and initial conditions in both of them.

3. DRBEM APPLICATION

The direct BEM is di�cult for the Poisson-type equation (6) due to the presence of the
nonhomogeneous term b on the right-hand side of the equation. This involves the evaluation
of a domain integral. Thus, the DRBEM procedure, suggested by Wrobel et al. [19], is made
use of which expands the nonhomogeneity in terms of a set of basis functions. These basis
functions are related to Laplacian of some auxiliary functions, and thus, the domain integral
on the right-hand side is also transformed to a boundary integral. The boundary only nature
of BEM when combined with the discretization in the time direction will result fewer number
of linearized equations than obtained in the case of interior methods (FDM, FEM).
Equation (6) is weighted through the region � as

∫
�

∇2uu∗ d�=
∫
�
bu∗ d� (9)

where u∗=(1=2�) ln(1=r) is the fundamental solution of Laplace equation, r is the distance
between the source and the �xed points.
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The nonhomogeneity can be approximated by means of a set of radial basis (coordinate)
functions fj(x; y) as

b(x; y; ux; ut)≈
N+L∑
j=1
�j(t)fj(x; y) (10)

where �j are unknown coe�cients depending on time, N and L are the numbers of boundary
and selected internal nodes, respectively. The approximating functions fj(x; y) are linked with
the particular solutions ûj of the equation ∇2ûj=fj.
Substituting fj’s into Equation (10) and then applying Green’s second identity to both sides

of Equation (9) we obtain the matrix-vector equation

Hu−Gq=(HÛ −GQ̂)� (11)

The (N +L)× (N +L) matrices G and H contain the integrals of the fundamental solution
and its normal derivative, respectively, over the boundary elements, u and q are (N + L)× 1
vectors for the solution and its normal derivative at the nodes. Each of the vectors ûj and
q̂j= @ûj=@n is considered to be one column of the matrices Û and Q̂, respectively. The vec-
tor � is obtained from Equation (10) as �=F−1b with the (N + L)× 1 vector b and the
(N + L)× (N + L) matrix F contains the coordinates function column vectors fj.
When � is substituted back in Equation (11) with a similar approximation for the unknown

u=F�, the convection terms are also approximated by using F matrix as

Hu−Gq=(HÛ −GQ̂)F−1
{

−1 + @u
@t

±M @F
@x
F−1u

}
(12)

and after rearranging, the following system of ordinary di�erential equations is obtained:

Cu̇+ Au−Gq=− C{−1} (13)

where the matrices A and C are as follows:

A = H ±MC@F
@x
F−1 (14)

C = −(HÛ −GQ̂)F−1 (15)

The sizes of the matrices Û , Q̂, C, A are (N +L)× (N +L). Now, from Equation (13) the
standard form of the �rst-order initial value problem is obtained

u̇+ Bu=Dq− {−1} (16)

where B=C−1A and D=C−1G are again (N + L)× (N + L) matrices.

4. DIFFERENTIAL QUADRATURE METHOD (DQM) FOR THE INITIAL
VALUE PROBLEM

Now Equation (16) is a set of the �rst-order ordinary di�erential equations in time. With
the given initial condition (5) it is a system of initial value problem. Various time marching
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schemes such as Euler, Runge–Kutta, FDM based on Taylor series method can be used for
obtaining solution at a required time level or at the steady state. Explicit methods must use
very small time increments due to the stability problems and then step-by-step computations
for reaching a certain time level which is computationally expensive. Implicit methods are
usually unconditionally stable but the �nal system of equations has a very large size when
it is combined with the space discretization. The system of initial value problem resulting
from di�usion and di�usion–convection problems is discretized using DQM by Tanaka and
Chen [16] and Bozkaya [17], respectively, after the application of DRBEM in spatial domain.
In Tanaka and Chen’s [16] application, the resulting system was a Lyapunov matrix equation
which was solved by the special Bartels–Stewart algorithm to reduce the computing e�ort of
solving such matrix equations. We follow here Bozkaya’s [17] formulation of DQM in time
discretization which results in a system of linear equations containing the unknown at both
discretized space and discretized time values. The procedure is stable, convergent and gives
the solution directly at the required time level with very small number of discretized time
points.
Application of DQM [20] to the initial value problem (16) discretizes the solution u in the

time direction

K∑
j=1
w(1)ij Uj + BUi=D �qi − {−1}; i=1; 2; : : : ; K (17)

where the vectors w(1)ij are the weighting coe�cients for the �rst-order derivative [21], K is
the number of time discretization points, Ui= u(ti) and �qi are actually the u and q vectors,
respectively,

u= {u1; u2; : : : ; uN ; : : : ; uN+L}; q= {q1; q2; : : : ; qN ; 0; : : : ; 0}

at the ith time level

Ui= {u1i ; u2i ; : : : ; uNi; u(N+1)i ; : : : ; u(N+L)i}; �qi= {q1i ; q2i ; : : : ; qNi; 0; : : : ; 0}

in which uji= uj(ti) and qji= qj(ti).
One can notice that Equation (17) gives a system of linear equations for each time level

ti (i=1; 2; : : : ; K)

w(1)i1 U1 + w
(1)
i2 U2 + · · ·+ w(1)iK UK + BUi=D �qi − {−1} (18)

where each Ui and �qi are of sizes (N +L)× 1. When system (18) is written for i=1; 2; : : : ; K ,
we �nally obtain the system of linear equations for the solution of the convection–di�usion
problem in the entire time domain

ÃŨ = D̃q̃− {−1} (19)

where

Ã=W + B̃ (20)
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The matrices W; B̃ and D̃ are expressed as

W =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

w11 w12 : : : w1K

w21 w22 : : : w2K

...

wK1 wK2 : : : wKK

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(21)

with (N + L)× (N + L) submatrices wij de�ned as wij=w(1)ij I , and

B̃=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

B

B

. . .

B

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
; D̃=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

D

D

. . .

D

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(22)

The sizes of the matrices Ã; B̃; W and D̃ are (N +L)K × (N +L)K and the identity matrix
I is of size (N + L)× (N + L).
The (N + L)K × 1 vectors Ũ and q̃ are de�ned as

Ũ = {u11; u21; : : : ; u(N+L)1; u12; u22; : : : ; u(N+L)2; : : : ; u1K ; u2K ; : : : ; u(N+L)K} (23)

q̃ = {q11; q21; : : : ; qN1; 0; : : : ; 0; q12; : : : ; qN2; 0; : : : ; 0; : : : ; q1K ; : : : ; qNK ; 0; : : : ; 0} (24)

In the linear system (19) boundary conditions (some of Ũ and some of q̃ nodal speci�ed
values) are inserted by interchanging the negative of corresponding columns and reordering
the solution vector in terms of unknown Ũ and q̃ nodal values. When the initial condition is
also inserted at the interior plus boundary nodes for the initial time level, system (19) �nally
becomes a rectangular system since known initial Ũ values are passed to the right-hand side
leaving less number of unknowns than the number of equations.
The resulting reordered form of system (19) is given as

˜̃A ˜̃U = ˜̃D ˜̃q− {−1} (25)

where the sizes of ˜̃A; ˜̃U are (N +L)K × ((N +L)K −L) and ((N +L)K −L)× 1, respectively.
The sizes of ˜̃D; ˜̃q are the same as the sizes of D̃ and q̃. Now ˜̃U contains all the unknown
values of Ũ and q̃ but ˜̃q contains boundary plus initial information.
System (25) gives the solution of our time-dependent convection–di�usion problem at all

the required time levels directly without the need of step-by-step computation in time and
without the need of using small time increment. But since the system is overdetermined least
square method must be employed to obtain the solution.
Application of the least square method to the overdetermined system (25) gives the normal

equations

˜̃AT ˜̃A ˜̃U = ˜̃AT ˜̃D ˜̃q− ˜̃AT{−1} (26)
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for the unknown ˜̃U which is the solution of our problem (1) for the entire domain �× (0; T )
in which T denotes the steady-state level.

5. NUMERICAL RESULTS AND DISCUSSION

The time-dependent MHD equations de�ning viscous, laminar �ow of an incompressible elec-
trically conducting �uid in a square duct |x|6 1, |y|6 1 for the time domain (0; T ) are solved.
In the DRBEM space discretization for the square domain, we use constant boundary elements

Figure 1. Velocity for M =2, N =40, L=60.

Figure 2. Magnetic �eld for M =2, N =40, L=60.
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Figure 3. Velocity for M =5, N =40, L=60.

Figure 4. Magnetic �eld for M =5, N =40, L=60.

with the number of elements ranging from 40 to 320 and some equally spaced interior points
for representing the solution in terms of graphics. The distribution of the interior points is
arbitrary which is one of the advantage of the DRBEM. We may place more points close
to the walls where the most of the action takes place in MHD �ow. But the number of
interior points (L) a�ects the accuracy of the solution since the size of the �nal system to
be solved is ((N + L)K − L)× ((N + L)K − L), N and K are being the number of boundary
and time discretized points. For the time domain (0; T ) in DQM Gauss–Chebychev–Lobatto
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Figure 5. Velocity for M =10, N =40, L=60.

Figure 6. Magnetic �eld for M =10, N =40, L=60.

(G-C-L) points are used in the discretization. These points are non-uniform and clustered
near the boundary which enable us to obtain converged and stable solution for our di�usion–
convection-type equation [20]. Linear and quadratic radial basis functions are used in approxi-
mating the right-hand side function b(x; y; ux; ut). Since we solve the transient MHD equations,
we are able to obtain the solution at any required time level. As t→ ∞, we get the steady-state
solution which can be compared with the available exact solution of the steady equations to
check the accuracy of the results. Our steady-state results for the velocity and the induced
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Figure 7. Velocity for M =30, N =40, L=60.

Figure 8. Magnetic �eld for M =30, N =40, L=60.

magnetic �eld for small and moderate values of Hartmann number (26M6 30) agree with
the Shercli�’s [22] exact solution to roughly three signi�cant digits.
Figures 1, 3, 5 and 7 exhibit the behaviour of velocity along the x-axis (y=0; 06 x6 1),

respectively, for M =2; 5; 10 and 30 at several time levels. Similarly, Figures 2, 4, 6 and 8 are
induced magnetic �eld curves for the same Hartmann numbers and time levels. One can notice
that steady-state values for the velocity and the induced magnetic �eld have been reached at a
faster rate when Hartmann number is increased. The solution (V; B) remains in these steady-
state values which are T =0:8; 0:4; 0:2 and 0:05 for M =2; 5; 10 and 30, respectively.
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Figure 9. Velocity for M =5, N =92.

Figure 10. Magnetic �eld for M =5, N =92.

In Figures 9–10, 11–12 and 13–14 the equal-velocity–equal-induced magnetic �eld lines
(contours) are presented at steady-state, respectively, for Hartmann numbers of M = 5; 10
and 20. It is noticed from Figures 9, 11 and 13 that, as the Hartmann number increases
the velocity shows a �attening tendency (contour values are decreased). It is also observed
that the boundary layer formation starts near the walls for both the velocity and the induced
magnetic �eld for increasing Hartmann number. This is the well-known behaviour of MHD
duct �ow. For the larger value of M the thickness of the boundary layer is smaller. One
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Figure 11. Velocity for M =10, N =92.

Figure 12. Magnetic �eld for M =10, N =92.

can also notice from Figures 9, 11 and 13 that, velocity becomes uniform at the centre of
the duct when M is increased and it always has its maximum through the centre. When the
Hartmann number is increased, the number of boundary elements (N ) must be increased in
our computations to get good accuracy. For small values of Hartmann number (M6 10) it
is su�cient to take N around 60 but for M =20 and M =30 we need to take N as 108
and 240, respectively. In obtaining numerical solution for M =50 we need resolution with an
increase of boundary elements number N . At the same time, since we need e�cient number
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Figure 13. Velocity for M =20, N =108.

Figure 14. Magnetic �eld for M =20, N =108.

of interior points (L) for representing the solution in terms of graphics, we control the total
size ((N+L)K−L)× ((N+L)K−L) of the system with the values of N; L and K not to have
di�culties in solving large systems. For this reason we could increase Hartmann number up
to 50 which needs 320 boundary elements. Further than this value of Hartmann number, the
total size of the system becomes very large due to the large values of especially N , and K
and L. Figures 15–16 and 17–18 are the velocity-induced magnetic �eld curves for M =30
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Figure 15. Velocity for M =30, N =240, Y =0:5.

Figure 16. Magnetic �eld for M =30, N =240, Y =0:5.

at y=0:5 (−16 x6 1) and for M =50 at y=0 (−16 x6 1), respectively. As we increase
Hartmann number M to values 50, discrepancies are examined especially for velocity. This
may be due to the fact that we need to solve a larger sized matrix system resulting from the
use of more boundary and interior points. Accumulation of roundo� errors drops accuracy to
10−2 especially close to the corners. In Figure 17 we notice that the numerical velocity values
for M =50 di�er from the exact velocity values near the walls because of this accuracy drop.
Increasing the mesh resolution seems to result in very slight improvements in the accuracy
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Figure 17. Velocity for M =50, N =320, Y =0.

Figure 18. Magnetic �eld for M =50, N =320, Y =0.

of the solution for M =50. Thus, for Hartmann number values M¿ 50 the continuation with
a mesh resolution is not practical due to the computational cost in the proposed numerical
solution.
Time discretization points in the DQM application for the initial value problem (16) are

taken as Gauss–Chebychev–Lobatto points which are mostly placed near the boundaries. Since

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 51:567–584



BE SOLUTION OF UNSTEADY MHD DUCT FLOW 583

the DQM is stable and convergent for these non-uniform points we don’t need to take too
many points. In the computations the number of G-C-L points was taken at most 5. The other
explicit methods need very small time increments for the step-by-step computation in time
(e.g. �t=10−3 in Reference [14]). By taking T as the required time level and using G-C-L
points in the interval (0; T ) the solution is obtained directly at t=T from the solution of
system (26).

6. CONCLUSION

The coupling of DRBEM and DQM for solving unsteady MHD duct �ow problem gives
a linear system of equations for the unknown nodal values at both discretized space and
discretized time points. This way, the solution can be obtained at any required time level
including the steady state, by using very small number of time discretization points and,
without the need of a time-stepping scheme. The solution procedure outlined in this paper
is applicable for MHD duct �ow with nonconducting walls for which the equation can be
decoupled and for the moderate values of Hartmann number (M6 50). Then the equations are
treated as time-dependent di�usion–convection-type equations in the DRBEM. For conducting
or partly conducting partly insulating walls, the equations must be solved by using BEM in
coupled form for which the corresponding fundamental solution need to be derived.
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